instance
instLeftCommutativePolygonalIntFoldrfun
{n : ℤ}
{hs : n ≥ 3}
:
LeftCommutative (foldrfun n hs)
Equations
- sumPolyToInt s hs S = List.foldr (foldrfun s hs) 0 S
Instances For
Both conditions IsnPolygonal and IsnPolygonal' are equivalent.
Equations
- instDecidableEqPolygonal a b = if h : ↑a = ↑b then isTrue ⋯ else isFalse ⋯
Equations
- instDecidableIsnPolygonal = decidable_of_iff (IsnPolygonal₀ m n h) ⋯
theorem
getnthpoly_monotone
(s : ℤ)
(hs : s ≥ 3)
(n : ℕ)
:
↑(getnthpoly s hs n) ≤ ↑(getnthpoly s hs (n + 1))
Equations
- getnthpolyfun s hs a = getnthpoly s hs a
Instances For
Equations
- getlepoly₀ s hs b = Finset.filter (fun (x : Polygonal s hs) => ↑x ≤ b) (getnthpolyfun s hs '' ↑(Finset.range (b + 1))).toFinset
Instances For
Equations
- finCaseDec p n = ⋯.mp (List.decidableBEx p (List.range (n + 1)))
Instances For
theorem
getlepoly₀Correct
(s : ℤ)
(hs : s ≥ 3)
(n : ℕ)
:
↑(getlepoly₀ s hs n) = {a : Polygonal s hs | ↑a ≤ n}
instance
instDecidablePredNatIsNKPolygonalOfNat
(m : ℤ)
(hm : m ≥ 3)
:
DecidablePred (IsNKPolygonal m hm 0)
Equations
- instDecidablePredNatIsNKPolygonalOfNat m hm 0 = id (let_fun this := ⋯; isTrue this)
- instDecidablePredNatIsNKPolygonalOfNat m hm k.succ = id (let_fun this := ⋯; isFalse this)
instance
instDecidablePredNatIsNKPolygonal
(s : ℤ)
(hs : s ≥ 3)
(k : ℕ)
:
DecidablePred (IsNKPolygonal s hs k)
Equations
- One or more equations did not get rendered due to their size.