instance
instLeftCommutativePolygonalIntFoldrfun
{n : ℤ}
{hm : n ≥ 3}
:
LeftCommutative (foldrfun n hm)
Equations
- sumPolyToInt m hm S = List.foldr (foldrfun m hm) 0 S
Instances For
Both conditions IsnPolygonal
and IsnPolygonal'
are equivalent.
Equations
- instDecidableEqPolygonal a b = if h : ↑a = ↑b then isTrue ⋯ else isFalse ⋯
Equations
- instDecidableIsnPolygonal = decidable_of_iff (IsnPolygonal₀ m n h) ⋯
theorem
getnthpoly_monotone
(m : ℤ)
(hm : m ≥ 3)
(n : ℕ)
:
↑(getnthpoly m hm n) ≤ ↑(getnthpoly m hm (n + 1))
Equations
- getnthpolyfun m hm x = getnthpoly m hm x
Instances For
Equations
- getlepoly₀ m hm b = Finset.filter (fun (x : Polygonal m hm) => ↑x ≤ b) (getnthpolyfun m hm '' ↑(Finset.range (b + 1))).toFinset
Instances For
Equations
- finCaseDec p n = ⋯.mp (List.decidableBEx p (List.range (n + 1)))
Instances For
theorem
getlepoly₀Correct
(m : ℤ)
(n : ℕ)
(hm : m ≥ 3)
:
↑(getlepoly₀ m hm n) = {x : Polygonal m hm | ↑x ≤ n}
instance
instDecidablePredNatIsNKPolygonalOfNat
(m : ℤ)
(hm : m ≥ 3)
:
DecidablePred (IsNKPolygonal m hm 0)
Equations
- instDecidablePredNatIsNKPolygonalOfNat m hm 0 = id (let_fun this := ⋯; isTrue this)
- instDecidablePredNatIsNKPolygonalOfNat m hm k.succ = id (let_fun this := ⋯; isFalse this)
instance
instDecidablePredNatIsNKPolygonal
(m : ℤ)
(hm : m ≥ 3)
(k : ℕ)
:
DecidablePred (IsNKPolygonal m hm k)
Equations
- One or more equations did not get rendered due to their size.