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Definition 1 (Polygonal Number). An integer n is said to be polygonal of order m if:

Ik € Z n:mT_Q-(k~(k—1))+k

Definition 2 (T ub).
I,:ZxZ—R

Iub:(n,m)|—>2-(1—i>+\/4.<1_i)2+8.(W)

Where I, is non-computable in Lean.

Definition 3 (I lb).

IL,:ZxZ—R

Iub:(n,m)|—>2-(1—2)4_\/4.(1_;)2_,_8.<n_(:z_3)>

Where I;;, is non-computable in Lean.

Lemma 4 (Interval). Let n,m € Z with m > 3.

m>4An>53-m = I,(n,m)—I(n,m)>4.002

Further,
m=3An>159-m = I,(n,m)—I(n,m)>6.002

That is, the length of the interval I, (n,m) — I;(n,m) is greater than 4.002 or 6.002, when

m >4 or m = 3 respectively.

Proof. With m > 4, we have

u(n,m) —4€(n,m) = 2;+\/8(:%>+ 24\/6(:1>;<131)250.002
g i+ () —1-y/6 %)—14—5—0.002
) B e
>4
by Corollary 3.5 with x . When m = 3, we have
u(n,m)—ﬁ(n,m)z;+\/8(:1>+3—\/6(:1)—145—0.002
>6

by Corollary 3.6 with z = 2

m”
Lemma 5 (qub). Letp e R, ¢ >0, 2 <0, and x < § + (§)2 +c, then:

22 —p-x—c<0



Proof. Since ¢ > 0, we have £8 +/ (g)2 + ¢ > +8+|E| > 0. The statement holds trivially when

x = 0. Assume that z > 0. Since z < § + 4/ (%)2 + ¢, we have x —p < —5 4/ (%)2 + c. Thus,

2> —pr—c=x(r—p)—c

Lemma 6 (qlb). Letp € R, ¢ >0, and x > § + (%)2 + ¢, then:

22—p-x—c>0

Proof. Since:c>§+\/(%)2+c>0,wehavex—p>—§+\/(§)2+c>—123+\/(§)2+c>0.

Hence,

22 —pr—c=x(x—p)—c

O

Lemma 7 (I 1b pos). Let n,m,b,r € Z with0 <r <m—3,b>I(n,m),3<m,2-m<n
then:

b>0

i.e., I(n,m) > 0 with the above assumptions.

Proof. Note that
b2€(n,m)<;§;>+\/<;i> +6(%>74+0.001
><1—% /2+\/<(1—2>/2) +6("—") -4

Setting p :=1— S and ¢ := 6 (=) — 4, we have ¢ > 0 and so, by Lemma 6 part (b), we obtain

m

that b2 +2b+4—3a =02 — (1 — )b — (6 (L) —4) > 0. O

m

N———




Lemma 8 (main). Let n,m,b,r € Z where b is odd, with0 <r<m—3,2-m <mn, I;;(n,m) <
b<I,(nm), andm|(n—>b—r) then:

and,

aisoddandb®> —4-a <0 andb®>+2-b+4—3-a>0

Proof. Note that
b > )—(1 i>+ (1 3>2+6(”) 4+0.001
L N R 2 m m '

> (12)/%\/((1Ti)/2)2+6("mr)4

n—r

Setting p :=1— % and ¢ :=6( — ) — 4, we have ¢ > 0 and so, by Lemma 6 part (b), we obtain
that b> +2b+4 —3a = b> — (1—2)b— (6 (%) —4) > 0. We can also see from the above
derivation that b > 0. Now,

bSu(n,m)zQ(l—%) +\/4 (1—;>2+8<”_(:_3)) —0.001
< (4 (1—%) /2) +\/(4 (1—%) /2)2+8("n_174).

Setting p:=4(1— 2) and ¢ :=8 (=), we have ¢ > 0 (as n —r > 2m — (m — 3) = m + 3) and

m

so, by Lemma 5 part (a), we obtain that b* —4a = b* — 4 (1 — %) b— % < 0.

O

Theorem 9 (mod m congr). Let by, b, be integers such that by = by + 2, and let n € Z, and
m € N such that m > 4. Then:

IreZ such that 0 <r <m—3 and 3 b € {by,by} such thatn =b+r (mod m)

Lemma 10 (blist). Let p,q € R, k € N such that ¢ —p > 2 - k, then:

There exists a sequence (b;)k~1 of k integers, and an integer m such that:

V(i=0,..,k—1),b;=2-(m+i)+1Ap<b, <q

Proof. Let £ = [p].
Note that p > ¢ — 1.
We can take m to be the least integer such that 2m + 1 > ¢. Indeed, for all i =0, ...,k — 1,
we have that b, > b, =2m+1>pand b, <b, ; =2(m+ (k—1)+1=2m+1+2(k—1).
If £ is even, then 2m 4+ 1 =/¢+ 1.
Hence,



2m+1+42k—1)=0+14+2(k—1)
={—1+42k
<p+2k
<ptq-p
=q
If £ is odd, then 2m + 1 = /¢.
Hence,

2m+ 142k —1)=(+2(k—1)
=/—1+2k—-1
<p+2k+1
<ptq-p-1
<q
O

Lemma 11 (res b). Let n € Z, and by, by, by € Z such that by = b; +2 and by = by + 2. Then
there exists b € {by,by,bs} such that:

3|n—">
Proof. Proof by cases on n mod b, O

Lemma 12 (res br). Let by,by € Z, by = by +2, and n,m € Z such that m > 4, then:

dreZ suchthat 0 <r<m—3and (m|(n—>by—7))V(m|(n—>by,—r))
Proof. Proof by cases on n mod b, O

Lemma 13 (b r). Let n,m be positive integers such that m > 4 and n > 53 -m or if m = 3,
n > 159 - m. Then there exists integers b,r such that:

1. b is odd

2. Ipy(n,m) < b < I,(n,m)
3.0<r<m-—3

4. m|(n—>b—r)

Proof. First, consider the case when m > 4 and n > 53m. By Lemma 4 part (a), we have
u(n,m) — £(n,m) > 4. It follows from Lemma 10 that there exist odd integers by,b; in the
interval [¢(n, m),u(n, m)] such that b; = by, + 2. Let 7’ be the remainder when n — b is divided
by m. Note that ’ < m—1and n—by,—r" =0 (mod m). If v > m—2, set r to ' —2 and b to b;.
Since v’ < m—1, wehave that r =1’ —2 <m—3. Also,r =r"—2>m—2—-2=m—4>4—4=0.
Then setting b to by, we have that n —b—r=n—>b;, — (' —=2) = n—by — " =0 (mod m).
Hence, m divides n — b — r. Otherwise, we have r’ < m — 3. Setting r to v’ and b to b,, we have
that n —b—r=n—>0b, —r" =0 (mod m). Hence, m divides n — b — r. Next, consider the case



when m = 3 and n > 159m. We set r to 0. By Lemma 4 part (b), we have u(n,m)—£(n,m) > 6.
It follows from Lemma 10 that there exist odd integers by, by, by in the interval [¢(n, m), u(n, m)]
such that b; = by +2 and by, = by +2. Since b; = by+2 (mod 3) and by =b; +2=by+4 =by+1
(mod 3), it follows that for some b € {by, b;,by}, we have n —b—r=n—>b=0 (mod 3). O

Lemma 14 (Cauchy’s Lemma). Let a,b be odd positive integers such that b*> < 4a and 3a <
b2 + 2b + 4, then there exists nonnegative integers s,t,u,v such that:

a=s>+t24+u?>+v®> and b=s+t+u+v
Proof. Omitted. O

Theorem 15 (Cauchy’s Polygonal Number Theorem).

Let m,n € N such that m > 3, andn > 120-m and if m > 4, n > 53 -m or if m = 3,
n > 159 -m.

Then S is the sum of m + 1 polygonal numbers of order m + 2.



