Cauchy's Polygonal Numbers

Tomas McNamer

 $\mathrm{June}\ 17,\ 2025$

Definition 1 (Polygonal Number). An integer n is said to be polygonal of order m if:

$$\exists k \in \mathbb{Z} \quad n = \frac{m-2}{2} \cdot (k \cdot (k-1)) + k$$

Definition 2 (I ub).

$$I_{ub}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$$

$$I_{ub}:(n,m)\mapsto 2\cdot\left(1-\frac{2}{m}\right)+\sqrt{4\cdot\left(1-\frac{2}{m}\right)^2+8\cdot\left(\frac{n-(m-3)}{m}\right)}$$

Where I_{ub} is non-computable in Lean.

Definition 3 (I lb).

$$I_{ub}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$$

$$I_{ub}:(n,m)\mapsto 2\cdot\left(1-\frac{2}{m}\right)+\sqrt{4\cdot\left(1-\frac{2}{m}\right)^2+8\cdot\left(\frac{n-(m-3)}{m}\right)}$$

Where I_{lb} is non-computable in Lean.

Lemma 4 (Interval). Let $n, m \in \mathbb{Z}$ with $m \geq 3$.

$$m \geq 4 \wedge n \geq 53 \cdot m \implies I_{ub}(n,m) - I_{lb}(n,m) > 4.002$$

Further,

$$m = 3 \land n \ge 159 \cdot m \implies I_{ub}(n, m) - I_{lb}(n, m) > 6.002$$

That is, the length of the interval $I_{ub}(n,m)-I_{lb}(n,m)$ is greater than 4.002 or 6.002, when $m\geq 4$ or m=3 respectively.

Proof. With $m \geq 4$, we have

$$u(n,m) - \ell(n,m) = \frac{3}{2} - \frac{1}{m} + \sqrt{8\left(\frac{n}{m}\right) + \frac{16}{m^2} + \frac{8}{m} - 4} - \sqrt{6\left(\frac{n}{m}\right) - \frac{3}{m}\left(1 - \frac{3}{m}\right) - \frac{15}{4}} - 0.002$$

$$\geq \frac{3}{2} - \frac{1}{4} + \sqrt{8\left(\frac{n}{m}\right) - 4} - \sqrt{6\left(\frac{n}{m}\right) - \frac{15}{4}} - 0.002$$

$$= \frac{5}{4} + \sqrt{8\left(\frac{n}{m}\right) - 4} - \sqrt{6\left(\frac{n}{m}\right) - \frac{15}{4}} - 0.002$$

$$\geq 4$$

by Corollary 3.5 with $x = \frac{n}{m}$. When m = 3, we have

$$u(n,m) - \ell(n,m) = \frac{7}{6} + \sqrt{8\left(\frac{n}{m}\right) + \frac{4}{9}} - \sqrt{6\left(\frac{n}{m}\right) - \frac{15}{4}} - 0.002$$

$$> 6$$

by Corollary 3.6 with $x = \frac{n}{m}$.

Lemma 5 (qub). Let $p \in \mathbb{R}$, c > 0, $x \le 0$, and $x < \frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}$, then:

$$x^2 - p \cdot x - c < 0$$

Proof. Since c>0, we have $\pm \frac{p}{2}+\sqrt{\left(\frac{p}{2}\right)^2+c}>\pm \frac{p}{2}+\left|\frac{p}{2}\right|\geq 0$. The statement holds trivially when x=0. Assume that x>0. Since $x<\frac{p}{2}+\sqrt{\left(\frac{p}{2}\right)^2+c}$, we have $x-p<-\frac{p}{2}+\sqrt{\left(\frac{p}{2}\right)^2+c}$. Thus,

$$\begin{split} x^2 - px - c &= x(x - p) - c \\ &< x\left(-\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}\right) - c \\ &< \left(\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}\right) \left(-\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}\right) - c \\ &= 0. \end{split}$$

Lemma 6 (qlb). Let $p \in \mathbb{R}$, c > 0, and $x > \frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}$, then:

$$x^2 - p \cdot x - c > 0$$

Proof. Since $x > \frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c} > 0$, we have $x - p > -\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c} > -\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c} > 0$. Hence,

$$\begin{split} x^2 - px - c &= x(x - p) - c \\ &> \left(\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}\right)(x - p) - c \\ &> \left(\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}\right)\left(-\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 + c}\right) - c \\ &= 0. \end{split}$$

Lemma 7 (I lb pos). Let $n, m, b, r \in \mathbb{Z}$ with $0 \le r \le m-3$, $b > I_{lb}(n, m)$, $3 \le m$, $2 \cdot m \le n$ then:

i.e., $I_{lb}(n,m) > 0$ with the above assumptions.

Proof. Note that

$$\begin{split} b \geq \ell(n,m) &= \left(\frac{1}{2} - \frac{3}{m}\right) + \sqrt{\left(\frac{1}{2} - \frac{3}{m}\right)^2 + 6\left(\frac{n}{m}\right) - 4} + 0.001 \\ &> \left(1 - \frac{6}{m}\right)/2 + \sqrt{\left(\left(1 - \frac{6}{m}\right)/2\right)^2 + 6\left(\frac{n-r}{m}\right) - 4} \end{split}$$

Setting $p:=1-\frac{6}{m}$ and $c:=6\left(\frac{n-r}{m}\right)-4$, we have c>0 and so, by Lemma 6 part (b), we obtain that $b^2+2b+4-3a=b^2-\left(1-\frac{6}{m}\right)b-\left(6\left(\frac{n-r}{m}\right)-4\right)>0$.

Lemma 8 (main). Let $n, m, b, r \in \mathbb{Z}$ where b is odd, with $0 \le r \le m-3$, $2 \cdot m \le n$, $I_{lb}(n, m) \le b \le I_{nb}(n, m)$, and $m \mid (n-b-r)$ then:

$$a=2\cdot\frac{n-b-r}{m}+b$$

and,

$$a \ is \ odd \ and \ b^2 - 4 \cdot a < 0 \ and \ b^2 + 2 \cdot b + 4 - 3 \cdot a > 0$$

Proof. Note that

$$\begin{split} b \geq \ell(n,m) &= \left(\frac{1}{2} - \frac{3}{m}\right) + \sqrt{\left(\frac{1}{2} - \frac{3}{m}\right)^2 + 6\left(\frac{n}{m}\right) - 4 + 0.001} \\ &> \left(1 - \frac{6}{m}\right)/2 + \sqrt{\left(\left(1 - \frac{6}{m}\right)/2\right)^2 + 6\left(\frac{n-r}{m}\right) - 4} \end{split}$$

Setting $p:=1-\frac{6}{m}$ and $c:=6\left(\frac{n-r}{m}\right)-4$, we have c>0 and so, by Lemma 6 part (b), we obtain that $b^2+2b+4-3a=b^2-\left(1-\frac{6}{m}\right)b-\left(6\left(\frac{n-r}{m}\right)-4\right)>0$. We can also see from the above derivation that b>0. Now,

$$b \le u(n,m) = 2\left(1 - \frac{2}{m}\right) + \sqrt{4\left(1 - \frac{2}{m}\right)^2 + 8\left(\frac{n - (m - 3)}{m}\right)} - 0.001$$

$$< \left(4\left(1 - \frac{2}{m}\right)/2\right) + \sqrt{\left(4\left(1 - \frac{2}{m}\right)/2\right)^2 + 8\left(\frac{n - r}{m}\right)}.$$

Setting $p:=4\left(1-\frac{2}{m}\right)$ and $c:=8\left(\frac{n-r}{m}\right)$, we have c>0 (as $n-r\geq 2m-(m-3)=m+3$) and so, by Lemma 5 part (a), we obtain that $b^2-4a=b^2-4\left(1-\frac{2}{m}\right)b-\frac{8n-r}{m}<0$.

Theorem 9 (mod m congr). Let b_1 , b_2 be integers such that $b_2 = b_1 + 2$, and let $n \in \mathbb{Z}$, and $m \in \mathbb{N}$ such that $m \geq 4$. Then:

 $\exists \ r \in \mathbb{Z} \ such \ that \ 0 \leq r \leq m-3 \ and \ \exists \ b \in \{b_1,b_2\} \ such \ that \ n \equiv b+r \pmod{m}$

Lemma 10 (blist). Let $p, q \in \mathbb{R}$, $k \in \mathbb{N}$ such that $q - p \ge 2 \cdot k$, then: There exists a sequence $(b_i)_0^{k-1}$ of k integers, and an integer m such that:

$$\forall (i = 0, ..., k - 1), b_i = 2 \cdot (m + i) + 1 \land p \le b_i \le q$$

Proof. Let $\ell = \lceil p \rceil$.

Note that $p > \ell - 1$.

We can take m to be the least integer such that $2m+1 \geq \ell$. Indeed, for all $i=0,\ldots,k-1$, we have that $b_i \geq b_0 = 2m+1 \geq p$ and $b_i \leq b_{k-1} = 2(m+(k-1))+1 = 2m+1+2(k-1)$. If ℓ is even, then $2m+1=\ell+1$. Hence,

$$\begin{split} 2m+1+2(k-1) &= \ell+1+2(k-1) \\ &= \ell-1+2k \\ &< p+2k \\ &\leq p+q-p \\ &= q \end{split}$$

If ℓ is odd, then $2m + 1 = \ell$. Hence,

$$\begin{split} 2m+1+2(k-1) &= \ell + 2(k-1) \\ &= \ell - 1 + 2k - 1 \\ &$$

Lemma 11 (res b). Let $n \in \mathbb{Z}$, and $b_1, b_2, b_3 \in \mathbb{Z}$ such that $b_2 = b_1 + 2$ and $b_3 = b_2 + 2$. Then there exists $b \in \{b_1, b_2, b_3\}$ such that:

$$3 \mid n-b$$

Proof. Proof by cases on $n \mod b_1$

Lemma 12 (res b r). Let $b_1, b_2 \in \mathbb{Z}$, $b_2 = b_1 + 2$, and $n, m \in \mathbb{Z}$ such that $m \geq 4$, then:

$$\exists \ r \in \mathbb{Z} \ such \ that \ 0 \leq r \leq m-3 \ and \ (m \mid (n-b_1-r)) \lor (m \mid (n-b_2-r))$$

Proof. Proof by cases on $n \mod b_1$

Lemma 13 (b r). Let n, m be positive integers such that $m \ge 4$ and $n \ge 53 \cdot m$ or if m = 3, $n \ge 159 \cdot m$. Then there exists integers b, r such that:

- 1. b is odd
- 2. $I_{lb}(n,m) \le b \le I_{ub}(n,m)$
- 3. $0 \le r \le m 3$
- 4. $m \mid (n b r)$

Proof. First, consider the case when $m \geq 4$ and $n \geq 53m$. By Lemma 4 part (a), we have $u(n,m)-\ell(n,m)\geq 4$. It follows from Lemma 10 that there exist odd integers b_0,b_1 in the interval $[\ell(n,m),u(n,m)]$ such that $b_1=b_0+2$. Let r' be the remainder when $n-b_0$ is divided by m. Note that $r'\leq m-1$ and $n-b_0-r'\equiv 0\pmod m$. If $r'\geq m-2$, set r to r'-2 and b to b_1 . Since $r'\leq m-1$, we have that $r=r'-2\leq m-3$. Also, $r=r'-2\geq m-2-2=m-4\geq 4-4=0$. Then setting b to b_1 , we have that $n-b-r=n-b_1-(r'-2)=n-b_0-r'\equiv 0\pmod m$. Hence, m divides n-b-r. Otherwise, we have $r'\leq m-3$. Setting r to r' and b to b_0 , we have that $n-b-r=n-b_0-r'\equiv 0\pmod m$. Hence, m divides n-b-r. Next, consider the case

when m=3 and $n\geq 159m$. We set r to 0. By Lemma 4 part (b), we have $u(n,m)-\ell(n,m)\geq 6$. It follows from Lemma 10 that there exist odd integers b_0,b_1,b_2 in the interval $[\ell(n,m),u(n,m)]$ such that $b_1=b_0+2$ and $b_2=b_1+2$. Since $b_1\equiv b_0+2\pmod 3$ and $b_2\equiv b_1+2\equiv b_0+4\equiv b_0+1\pmod 3$, it follows that for some $b\in\{b_0,b_1,b_2\}$, we have $n-b-r\equiv n-b\equiv 0\pmod 3$.

Lemma 14 (Cauchy's Lemma). Let a, b be odd positive integers such that $b^2 < 4a$ and $3a < b^2 + 2b + 4$, then there exists nonnegative integers s, t, u, v such that:

$$a = s^2 + t^2 + u^2 + v^2$$
 and $b = s + t + u + v$

Proof. Omitted. \Box

Theorem 15 (Cauchy's Polygonal Number Theorem).

Let $m, n \in \mathbb{N}$ such that $m \geq 3$, and $n \geq 120 \cdot m$ and if $m \geq 4$, $n \geq 53 \cdot m$ or if m = 3, $n \geq 159 \cdot m$.

Then S is the sum of m+1 polygonal numbers of order m+2.